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Today's goals

We have a bunch of things we tried, some of them worked,

some of them didn’t — how do we write a paper about
this?

Introducing the concept of model papers and how to use them

How do | pick projects to work on, going forward?



Writing A Paper



Scene Graph Prediction with Limited Labels
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Abstract

knowledge bases such as Visual Genome power
applications in computer vision, including visual
nswering and captioning, but suffer from sparse,
e relationships. All scene graph models to date
1 to training on a small set of visual relationships
thousands of training labels each. Hiring human
s is expensive, and using textual knowledge base
2 methods are incompatible with visual data. In
we introduce a semi-supervised method that as-
abilistic relationship labels to a large number of
images using few labeled examples. We analyze
tionships to suggest two types of image-agnostic
at are used to generate noisy heuristics, whose out-
sgregated using a factor graph-based generative
ith as few as 10 labeled examples per relation-
nerative model creates enough training data to
existing state-of-the-art scene graph model. We
te that our method outperforms all baseline ap-
on scene graph prediction by 5.16 recall @100
CLS. In our limited label setting, we define a
v metric for relationships that serves as an indi-
778) for conditions under which our method
pver transfer learning, the de-facto approach for

Aryesing
— scenegren

model

el k E
Our semisupervisd method automatially gencrates
pmmm\nuc relationship labels (o train any scene graph model.

few mla(ionships that have thousands of labels [31,49,5

“more human workers is an inelTective soluton to
labelmg relnuonslnps because image annotation s so tedious
that seemingly obvious labels are left unannotated. To com-
plement human annotators, traditional text-based knowledge
completion tasks have leveraged numerous semi-supervised
or distant supervision approaches [6, 7,17, 34]. These meth-
ods find syntactical or lexical patterns from a small labeled
set to extract missing relationships from a large unlabeled
set. In text, pattern-based methods are successful, as relation-
ships in text are usually document-agnostic (¢.g. <Tokyo
-is capital of - Japan>). Visual relationships are
often incidental: they depend on the contents of the partic-
ular image they appear in. Therefore, methods that rely on
external knowledge or on patterns over concepts (e.g. most
instances of dog next to £risbee are playing withit)
do not generalize well. The inability to utilize the progress

ith limited labels. ! .
in text-based methods necessitates specialized methods for
visual knowledge.

Juction Tn this paper, we automatically generate missing rela-

tionships labels using a small, labeled dataset and use these
generated labels to train downstream scene graph models
(see Figure 1). We begin by exploring how to define image-
agnostic features for relationships so they follow patterns
across images. For example, eat usually consists of one
object consuming another object smaller than itself, whereas
Look often consists of common objects: phone, laptop,
or window (see Figure 3). These rules are not dependent on
raw pixel values; they can be derived from image-agnostic
features like object categories and relative spatial positions
between objects in a relationship. While such rules are sim-
ple, their capacity to provide supervision for unannotated
relationships has been unexplored. While image-agnostic

ffort to formalize a structured representation for
isual Genome [27] defined scene graphs, a for-
 similar to those widely used to represent knowl-

s[13,18,56]. Scene graphs encode objects (e.&
blke) as nodes connected via pairwise relation-
. riding) as edges. This formalization has led
-the-art models in image captioning [7], image
25,42], visual question answering [24], relation-
ling [26] and image generation [23]. However,

scene graph models ignore more than 98% of
ip categories that do not have sufficient labeled
(see Figure 2) and instead focus on modeling the

Heursic generation

0
H == GonwrteJpoursies
©l . Hay<othen Moel can choose o bstan
carry = true =3
Few Labeled .
Relatonsnps =
Trainfctor re ainany Scane
Ly Grophode
H
H Generaive el
o

Somisupervised

Aagrogatod
mage agnostc mocel Probabisic Labels

arry), we use i features create heuristics and then use a generative model
obabilistic labels m a lm'gc unlabeled set of images. ‘ﬂ\cs:
ostic rules are threshold-based conditions that are
lly defined by the decision tree. To limit the com-
hese heuristics and thereby prevent overfitting, we
w decision trees [3¢] with different restrictions on
cach feature set to produce . different decision
hen predict labels for the unlabeled set using these
producing a A € R7*I27| matrix of predictions
abeled relationships.
ver, we only use these heuristics when they have
fence about their label; we modify A by converting
ted label with confidence less than a threshold
ly chosen to be 2x random) to an abstain, or no
snment. An example of a heuristic is shown in
i the subject is above the object, it assigns a
bel for the predicate carry.
e model: These heuristics, individually, are noisy
10t assign labels to all object pairs in Dy. As a
aggregate the labels from all J heuristics. To do so,
e a factor graph-based generative model popular
ed weak supervision techniques [1,39,41,45,48].

Ly =Ey oy [log (1 +exp(-6' V'Y))|

where 0 is the learned parameters, 7 is the distribution
Tearned by the generative model, Y is the true label, and V/
are features extracted by any scene graph prediction model.
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features can characterize some visual relationships very well,
they might fail to capture complex relationships with high
variance. To quantify the efficacy of our image-agnostic
features, we define “sublypes” that measure spatial and cate-
gorical complexity (Section 3).

Based on our analysis, we propose a semi-supervised ap-
proach that leverages image-agnostic features to label miss-
ing relationships using as few as 10 labeled instances of cach
relationship. We learn simple heuristics over these features
and assign probabilistic labels to the unlabeled images using
a generative model [39, 46]. We evaluate our method’s label-
ing efficacy using the completely-labeled VRD dataset [31]
and find that it achieves an F1 score of 57.66, which is 11.84
points higher than other standard semi-supervised methods
like label propagation [57]. To demonstrate the utility of
our generated labels, we train a state-of-the-art scene graph
model [54] (see Figure 6) and modify its loss function to
support probabilistic labels. Our approach achieves 47.53
recall @100' for predicate classification on Visual Genome,
improving over the same model trained using only labeled
instances by 40.97 points. For scene graph detection, our ap-
proach achieves within 8.65 recall @ 100 of the same model
trained on the original Visual Genome dataset with 108x
more labeled data. We end by comparing our approach to
transfer leaming, the de-facto choice for learning from lim-
ited labels. We find that our approach improves by 5.16
recall@100 for predicate classification, especially for re-
lationships with high complexity, as it generalizes well to
unlabeled subtypes

Our contributions are three-fold. (1) We introduce the
first method to complete visual knowledge bases by finding
missing visual relationships (Section 5.1). (2) We show the
utility of our generated labels in training existing scene graph
prediction models (Section 5.2). (3) We introduce a metric to
characterize the complexity of visual relationships and show
itis a strong indicator (R? = 0.778) for our semi-supervised
‘method’s improvements over transfer learning (Section 5.3).

1Recall@ K is a standard measure for scene graph prediction [21],

‘This ignotes more than 98% of the relationships with

2. Related work

Textual knowledge bases were originally hand-curated by
expertsto structure facts [4,5,44] (e.g. <Tokyo-capital
of - Japan>). To scale dataset curation efforts, recent
approaches mine knowledge from the web [9] or hire non-
expert annotators to manually curate knowledge [5,47]. Tn
semi-supervised solutions, a small amount of labeled text is
used o extractand esploit paters inunlabeled sentences 2
Unfortunately, such approaches cannot be
dn-ec!ly npplled to visual relationships; textual relations can
often be captured by external knowledge or patterns, while
visual relationships are often local to an image.

Visual relationships have been studied as spatial priors [14,
161, co-occurrences [51], language statistics [25, 31, 53], and
within entity contexts [29]. Scene graph prediction mod-
els have dealt with the difficulty of learning from incom-
plete knowledge, as recent methods utilize statistical
tifs [54] or object-relationship dependencies [30,49, 50, 55].
Al these methods limit their inference to the top 50 most
frequently occurring predicate categories and ignore those
without enough labeled examples (Figure 2).

The de-facto solution for limited label problems is trans-
fer learning [15, 52], which requires that the source domain
used for pre-training follows a similar distribution as the
target domain. In our setting, the source domain is a dataset
of frequently-labeled relationships with thousands of exam-
ples [30,49,50, 551, and the target domain is a set of limited
label relationships. Despite similar objects in source and
target domains, we find that transfer learning has difficulty
‘generalizing to new relationships. Our method does not rely
on availability of a larger, labeled set of relationships; in-
stead, we use a small labeled set to annotate the unlabeled
set of images.

To address the issue of gathering enough training la-
bels for machine learning models, data programming has
emerged as a popular paradigm. This approach leamns to
‘model imperfect labeling sources in order to assign train-
ing labels to unlabeled data. Imperfect labeling sources
can come from crowdsourcing [10], user-defined heuris-
tics [£,43], multi-instance learning [22,40), and distant su-
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Figure 7. (2) Heuristics based on spatial features help predict <man - £1y - ki te>. (b) Our model learns that 1ook is highly correlated

with phone. () chair

(d) We overfit to the spatial positioni ted with

feature for s it and fail o identify hang as the correct relationship.

Given our image-agnostic features, we produce a reasonable label for <glass - cover -

are typically longer and directly underneath the subject. (¢)
&> However, our model s incorrect, as two

typically different predicates (st and cover) share a semantic meaning in the context of <glasses - 2 - face>.

that our semi-supervised method outperforms transfer learn-

relationships or scene graphs. Each scene graph contains
objects localized as bounding boxes in the image along with
pairwise relationships connecting them, categorized as ac-
tion (e.g., carry), possessive (¢.g., wear), spatial (e.g.,
e aY  rraratve (a6 +211ar +han) deserirdaeg

object categories and predicate labels, and

features in Dy before propagating labels from D), to Dy
‘We compare t0.a strong frequency baselines: (FREQ) uses
the object counts as priors to make relationship predictions.

and FREQ+OVERLAP increments such counts only if the

Figure 3. muummp:. suchas 17, eat, and s can be characterzed effcively by ther categorcal (= and o efer o sujec and bjct,

like £1:

pervision [12,32]. Often, these imperfect labeling sources
take advantage of domain expertise from the user. Tn our
case, imperfect labeling sources are automatically generated
heuristics, which we aggregate to assign a final probabilistic
Iabel to every pair of object proposals.

3. Analyzing visual relationships

‘We define the formal terminology used in the rest of the
paper and introduce the image-agnostic features that our
semi-supervised method relies on. Then, we seek quantita-
tive insights into how visual relationships can be described
by the properties between its objects. We ask (1) what image-
agnostic features can characterize visual relationships? and
(2) given limited labels, how well do our chosen features
characterize the complexity of relationships? With these in
‘mind, we motivate our model design to generate heuristics
that do not overfit to the small amount of labeled data and
assign accurate labels to the larger, unlabeled set.

3.1. Terminology

A scene graph is a multi-graph G that consists of objects
o as nodes and relationships r as edges. Each object 0, =
(b(, ¢, consists of a bounding box b, and its category ¢; €

C where C is the set of all possible object categories (c.g.
dog, frishee). Relationships are denoted <subject
- predicate - object>or <o-p-o'>. p € Pisa
predicate, such as ride and eat. We assume that
we have a small labeled set {(0,p,0') € Dy} of annotated
relationships for each predicate p. Usually, these datasets
are on the order of a 10 examples or fewer. For our semi-
supervised approach, we also assume that there exists a large
set of images Dy without any labeled relationships.

3.2. Defining image-agnostic features

Tt has become common in computer vision to uilize pre-
trained convolutional neural networks to extract features
that represent objects and visual relationships [31,49, 50].
Models trained with these features have proven robust in
the presence of enough training labels but tend to overfit
when presented with limited data (Section 5). Consequently,
an open question arises: what other features can we utilize

only on a few features — ki tes are often seen high up in the sky.

to label relationships with limited data? Previous literature
has combined deep learning features with extra information
extracted from categorical object labels and relative spatial
object locations [25,31]. We define categorical features,

< 0,0/ >, as a concatenation of one-hot vectors of the
subject o and object o', We define spatial features as:
W +h)
W ow Wl Wl
w R w wh wih

where b = [y,, h,w) and b = [y, 2/, ¥, /] are the top-
left bounding box coordinates and their widths and heights
To explore how well spatial and categorical features can
describe different visual relationships, we train a simple
decision tree model for each relationship. We plot the im-
portances for the top 4 spatial and categorical features in
Figure 3. Relationships like £1y place high importance on
the difference in y-coordinate between the subject and object,
capturing a characteristic spatial pattern. 1ook, on the other
hand, depends on the category of the objects (e.g. phone,
laptop, window) and not on any spatial orientations.

3.3. Complexity of relationships

To understand the efficacy of image-agnostic features,
we'd like to measure how well they can characterize the
complexity of particular visual relationships. As seen in
Figure 4, a visual relationship can be defined by a number of
image-agnostic features (e.g. a person can ride a bike, or
adog can ride a surfboard). To systematically define this
notion of complexity, we identify subtypes for each visual
relationship. Each subtype captures one way that a relation-
ship manifests in the dataset. For example, in Figure 4, ride
contains one categorical subtype with <person - ride -
bike> and another with <dog - ride - surfboard>.
Similarly, a person might carry an object in different rela-
tive spatial orientations (e.g. on her head, to her side). As
shown in Figure 5, visual relationships might have signifi-
cantly different degrees of spatial and categorical complex-
ity, and therefore a different number of subtypes for each.
To compute spatial subtypes, we perform mean shift clus-
tering [11] over the spatial features extracted from all the

‘Table 2. Results for scene graph prediction tasks with r. = 10 labeled examples per predicate, reported as recall @K. A state-of-the-art scene
‘graph model trained on labels from our method outperforms those trained with labels generated by other baselines, like transfer learning,

Graph Detection  Scene Graph Classification icate Classification
Model R@G20 R@S0 R@I00 RG20 RGS0 R@I00 RG220 R@S0 R@I00
BASELII\E [n=10] 000 000 000 004 004 004 317 530 661
REQ 901 1101 1164 1110 1108 1092 2098 2098 2080
3 FREQHOVERLAP 1016 1084 1086 990 991 991 2039 2090 2221
3 TRANSFER LEARNING 1199 1440 1648  17.10 1791 18.16 3969 4165 4237
= DECISION TREE [3¢] ILIL 1258 1323 1402 1451 1457 3175 3302 3335
LABEL PROPAGATION [57] 648 674 683 967 991 997 2428 2517 2541
OURS (DEEP) 297 320 333 1044 1077 1084 2316 2393 2417
OURS (SPAT.) 326 320 291 1098 1128 1137 2623 2710 2726
£ Ours (CatEc.) 757 792 804 2083 2144 2157 4349 4493 4550

How do we get here?

Iabeled relationship instances. We also compare to ORACLE, which is trained with 108 x more labeled data.

spatial features, (CATEG. + SPAT. + DEEP) combines com-
bines all three, and OURS (CATEG. + SPAT. + WORDVEC)
includes word vectors as richer representations of the cate-

objects that have a large difference in y-coordinate. In
Figure 7(b), we correctly label Look because phone is
an important categorical feature. In some difficult cases,

o " bt S et L

Figure 4. We define the number of subtypes of a relationship as a measure of its complexi

ride can be expressed as <person - ride
Categorical Subtypes.

1000
s00
o

P

Num, Subtypes

. Subtypes can be categ
- bike> while another is <dog - ride - sur fboard>. Subly]
carry has a subtype with a small object carried (o the side and another with a large object carried overhead.

Spatial Subtypes.
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o
P
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Figure 5. A subset of visual relationships with different levels of complexity as defined by spatial and categorical
we show how this measure is a good indicator of our semi-supervised method's effectiveness compared to baselin

relationships in Visual Genome. To compute.

Algorithm 1 pe d Alg. «

subtypes, we count the number of unique object categories
associated with a relationship.

With access to 10 or fewer labeled instances for these
visual relationships, it is impossible to capture all the sub-
types for given relationship and therefore difficult to lear a
good representation for the relationship as a whole. Conse-
quently, we turn to the rules extracted from image-agnostic
features and use them to assign labels to the unlabeled data
in order to capture a larger proportion of subtypes in cach
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visual relationship. We posit that this will be
over methods that only use the small labeled set to train a
scene graph prediction model, especially for relationships
with high complexity, or a large number of subtypes. In
Section 5.3, we find a correlation between our definition of
complexity and the performance of our method.

4. Approach

11: Trin scene graph model, SGM := train( Dy -
12: OUTPUT: SGM()

from the object proposals extracted u
detector [19] on unlabeled Dy, (2):
over the image-agnostic features, an
factor-graph based generative mode
sign probabilistic labels to the unlabe

g vis
relationships that can be then used to train any downstream
scene graph prediction model. We assume that in the long-
tail of infrequent relationships, we have a small labeled
set {(0,p,0) € D} of annotated relationships for each
predicate p (often, on the order of a 10 examples or less). As
discussed in Section 3, we want to leverage image-agnostic
features to learn rules that annotate unlabeled relationships.

Our approach assigns probabilistic labels to a set Dy of
un-annotated images in three steps: (1) we extract image-
agnostic features from the objects in the labeled D), and

Improvement vs. Subtypes
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Performance vs. Subtypes.
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S
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sles gives
2 propor-
2 8 (right
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s perfor-
secause it
overfits to image features while OURS (CATEG. + SPAT.)
performs the best. We show improvements of 0.71 re-
call@100 for SGDET over OURS (MAJORITYVOTE), indi-
cating that the generated heuristics indeed have different
‘accuracies and should be weighted differently.

iddle), and

we hypothesized earlier, TRANSFER
cases when led set only capty
the relationship’s subtypes. This tre
plains how OURS (CATEG. + SPAT.)
given a small portion of labeled subiy

6. Conclusion

‘We introduce the first method t
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to “just write”. Being strategic will save time and avoid dead ends.



...so what do we do instead?



There are many genres

Even within areas, there exist many different genres of paper. Each
genre is typically built around the claim you are making, and implies
a structure to the sections and to the writing. For example:

We solve a problem: We measure an outcome: We introduce a technique:
articulate the problem, explain that nobody has articulate a problem as
explain what causes that bothered understanding above, but focus the
problem and what others how a phenomenon narrative on the technique
have done to deal with it, behaves, explain how to you've created, since it will
detail your approach, and create a study that sheds generalize

prove that you make light, and report the

progress on the problem outcomes of it



Genres imply structure

Common “We Solve A Problem” structure: by Z’/)S
Introduction: overview and thesis ar@a/
Related Work: situate your contribution relative to prior research
Approach: describe your approach and important implementation details

Evaluation: test whether your approach succeeds at its stated goals

Method

Results
Discussion: reflect on limitations, implications, and future work

Conclusion: summarize and restate your contribution

Wiy VG/J,



"Which genre is our project?”

You can often derive the appropriate genre in the same way
that you derived the evaluation — what is the thesis and
claim that you are supporting?

But this may be challenging until you've read a large
number of papers. So instead...



Model papers

A model paper is a paper that you can use as a model or template for
constructing your paper.

You should be able to structure your paper in the same way as your
model paper

Follow its general flow of argument in the introduction
Use similar section and subsection heading organization
Create figures, tables, and graphs that fulfill the same function as theirs

Apply the same general proportions, e.g., number of pages per section

—_



Selecting your model paper

Model paper != nearest neighbor paper

The model paper should be a paper that makes the same type of
argument as yours. It should be in the same genre as you seek.

Often the nearest neighbor paper will make a similar form of argument, but not
necessarily

Often the nearest neighbor paper will be a well-written paper,
but not necessarily

Find your model paper and share it with your TA for a thumbs up before
writing.

w —



From model to paper

Start by reverse-outlining the model paper.
How does it structure its argument into sections?

What is the main expository goal of each section? What is its
sub-thesis?

What role does each figure play?

—_



From model to paper

Next, build a mapping from their outline to yours.

Translate each section and sub-section heading into what the
equivalent heading is for you

Translate each sub-thesis into what the equivalent sub-thesis is for
you

Translate each figure into what the equivalent figure is for you

—_



What it it doesn’t quite fit?

Model papers should be templates, not straightjackets. You will
probably need to adapt your mapping slightly from what your
model paper does.

e.g., you require a slightly different evaluation structure or visualization than
them

e.g., you're drawing on a different literature than them, and need to explain
something that they didn't

You can play with the genre — just don’t discard the genre. Check
with your TA for any substantial changes that you want to make.

—_



Assignment 5: draft paper

Work together with your team to write a draft paper. This should be a
complete draft in the template format of your research, and include
reviewable drafts of every section.

“Can we include text we already wrote?” Absolutely! + tweaks

“Do we need the results of our evaluation?” Yes, but you can continue to update your
results through the final deadline.

“What if our project doesn’t work out?” Still write up the report. Negative results can be
valuable. Unpack in Discussion what it was about your idea or assumptions that wasn't
borne out.

After this, Assignment 6 will be a draft talk.

~ —



Picking Projects



Where do research ideas come from?



A common mindset: riffing

Ye Olde Riffing Recipe, let the researcher cook:
Read a bunch of papers
Pick a paper you really like

Ask yourself: how could | extend this to another domain, or make progress on
one of its challenging assumptions, or otherwise extend it?

This is a process for generating a one-paper bit flip

o0



Riffing is often a good
starting point for a first
independent project

It places focus on execution, and gives you most of the
inputs, outputs, and constraints—the assumptions—up
front



Even for experienced researchers

Lots of work on
task-centric workspaces
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MSB (Michael Bernstein)



What are the risks here?

It's not clear that all bit flips “Salami Science”: possibility of
are worthwhile. incremental work when we

A misappropriated quote: "Your scientists were so

preoccupied with whether or not they could that they d on It V| ew th e ﬂ e | d ,S
didn't stop to think if they should.” .
assumptions broadly




What we mean when we
say “incremental”

Research and science are not neutral: they embed values

Incrementally is a push back against minor adjustments to
models that don't build substantial theory



What we mean when we
say science isn’t neutral

Science and Technology Studies (STS) establishes that what counts as a
contribution, or as major vs. incremental, or even what counts as Computer
Science, is socially constructed by elites in the field.

Not so long ago, HCI and Ethics were not seen as legitimate CS

Also not so long ago, CS itself was not seen as a legitimate field

Objection to creating a CS department at Stanford, via Leo Guibas:
“We don’t have a department of Refrigerator Science!”

Thanks to Jingyi Li!



So what should we do
instead of only riffing
on papers?



Desert Metaphor

s this a big rock?

Do | have an angle on it?



"It you want to have a
good idea, you must
have many ideas.”

— Nobel Prize winning chemist Linus Pauling



"It you want to have a
good idea, you must
have many ideas.”

2- 6 = 95% of samples
3- 0 =99.7% of samples




Some Strategies
and Stories



Rage-based research

When a pattern or underlying assumption in the field starts
to dig at you until you decide to prove that it's wrong.

Understanding Social Reasoning in Language Models
with Language Models

Kanishk Gandhi * J.-Philipp Frinken * Tobias Gerstenberg Noah D. Goodman
Stanford University
{kanishk.gandhi, jphilipp}@stanford.edu

Abstract

As Large Language Models (LLMs) become increasingly integrated into our
everyday lives, understanding their ability to comprehend human mental states
becomes critical for ensuring effective interactions. However, despite the recent
attempts to assess the Theory-of-Mind (ToM) reasoning capabilities of LLMs, the
degree to which these models can align with human ToM remains a nuanced topic
of exploration. This is primarily due to two distinct challenges: (1) the presence
of inconsistent results from previous evaluations, and (2) concerns surrounding
the validity of existing evaluation methodologies. To address these challenges,
we present a novel framework for procedurally generating evaluations with LLMs
by populating causal templates. Using our framework, we create a new social
reasoning benchmark (BigToM) for LLMs which consists of 25 controls and 5,000




When new tools reopen
old problems

Generative Agents: Interactive Simulacra of Human Behavior

Joon Sung Park Joseph C. O’Brien Carrie J. Cai
Stanford University Stanford University Google Research
Stanford, USA Stanford, USA Mountain View, CA, USA
joonspk@stanford.edu jobrien3@stanford.edu cjcai@google.com

Meredith Ringel Morris Percy Liang Michael S. Bernstein
Google DeepMind Stanford University Stanford University
Seattle, WA, USA Stanford, USA Stanford, USA
merrie@google.com pliang@cs.stanford.edu msb@cs.stanford.edu

Joining for coffee at a cafe

Taking a walk
in the park
]: Hey Klaus,
I join you for coffee
[Klaus]: Not at all, Abigail.
How are you?
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en you see a new north star

Social Contract AI: Aligning Al Assistants with
Implicit Group Norms

Jan-Philipp Friinken, Sam Kwok', Peixuan Ye', Kanishk Gandhi
Dilip Arumugam, Jared Moore, Alex Tamkin

Tobias Gerstenberg, Noah D. Goodman
Stanford University
jphilipp@stanford.edu

Abstract

We explore the idea of aligning an AI assistant by inverting a model of users’
(unknown) preferences from observed interactions. To validate our proposal, we
run proof-of-concept simulations in the economic ultimatum game, formalizing
user preferences as policies that guide the actions of simulated players. We find
that the Al assistant accurately aligns its behavior to match standard policies from
the economic literature (e.g., selfish, altruistic). However, the assistant’s learned
policies lack robustness and exhibit limited generalization in an out-of-distribution
setting when confronted with a currency (e.g., grams of medicine) that was not
included in the assistant’s training distribution. Additionally, we find that when
there is inconsistency in the relationship between language use and an unknown
DO e o an alitn DO On W1l rude laneuaee ne a an
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When you see a new north star

Searching for Computer Vision
North Stars

Li Fei-Fei & Ranjay Krishna

Computer vision is one of the most fundamental areas of artificial intelligence re-
search. It has contributed to the tremendous progress in the recent deep learning rev-
olution in Al In this essay, we provide a perspective of the recent evolution of object
recognition in computer vision, a flagship research topic that led to the breakthrough
data set of ImageNet and its ensuing algorithm developments. We argue that much
of this progress is rooted in the pursuit of research “north stars,” wherein researchers
focus on critical problems of a scientific discipline that can galvanize major efforis
and groundbreaking progress. Following the success of ImageNet and object recog-
nition, we observe a number of exciting areas of research and a growinglist of north
star problems to tackle. This essay recounts the brief history of ImageNet, its related
work, and the follow-up progress. The goal is to inspire more north star work to ad-
vance the field, and Al at large.




Pulling the thread on a weird result

Jury Learning: Integrating Dissenting Voices into Machine
Learning Models

Mitchell L. Gordon
Stanford University
Stanford, USA
mgord@cs.stanford.edu

Kayur Patel
Apple Inc.
Seattle, USA
kayur@apple.com

LABELER POPULATION SELECTED JURY
FROM DATASET COMPOSITION

+
UNSEEN EXAMPLE

Michelle S. Lam
Stanford University
Stanford, USA
mlam4@stanford.edu

Jeffrey T. Hancock
Stanford University
Stanford, USA
hancockj@stanford.edu

Michael S. Bernstein
Stanford University
Stanford, USA
msb@cs.stanford.edu

PREDICTED JUROR
LABELS

/N trials
)

\ ¢

The jury learning architecture models each

In this dataset, the labeler The decisionmaker composes a jury individual labeler in the dataset. Jury
population consists of labelers to rule on input examples (here, they learning then samples labelers to fill the

Joon Sung Park
Stanford University
Stanford, USA

joonspk@stanford.edu

Tatsunori Hashimoto

Stanford University
Stanford, USA
tatsu@cs.stanford.edu

JURY CLASSIFICATION

[ Median jury outcome
from N trials

Sv-7

To aid a final classification decision, the
model surfaces the median jury outcome
over multiple trials (each with re-sampled
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Playing a hunch: "Hey,
would it be possible to..."

Strategic Reasoning with Language Models

Kanishk Gandhi Dorsa Sadigh Noah D. Goodman
Stanford University
kanishk.gandhi@stanford.edu

Abstract

Strategic reasoning enables agents to cooperate, communicate, and compete with




Pulling the thread on a weird result

Eliciting Compatible Demonstrations for o e
Multi-Human Imitation Learning ﬂﬂ 1 ﬁﬁ
Sgregt ey "

Kanishk Gandhi, Siddharth Karamcheti, Madeline Liao, Dorsa Sadigh
Department of Computer Science, Stanford University (a) Operators are shown five demonstrations from the initial set of demonstrations that the policy was trained on. ) oo of
{kanishk.gandhi, skaramcheti, madelineliao, dorsa}@stanford.edu . trajectory replayed

(b) The operators receive online visual feedback on the compatibility of their demonstration with the base (1) Expert demo with
policy (green is compatible and red is not). similar states played back

Figure 3: The three phases of our active elicitation interface spanning the initial prompting phase (a),
the subsequent demonstration phase with live feedback (b), and finally, the feedback phase (c).




Which approach do | apply?

This is a skill you develop through mentorship — it's highly
contingent, and depends on the problem and solution
space that you're navigating.

My suggestion: try on different hats around the problems
you're interested in, and see what works.



One final note:

people >> projects



Writing a paper &
Picking Projects

Slide content shareable under a Creative Commons
Attribution-NonCommercial 4.0 International License.



