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What problem are we solving?

‘I feel like we're just not getting anywhere.”
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losing motivation.”



Today’s big idea: velocity

What is research velocity?
How do we achieve high velocity?

What other signals do people mistake for velocity?



Michael’s theory of Researcher success

To be a successful researcher, you need to master two skills
that operate in a tight loop with one another.

Vectoring: identifying the biggest dimension of risk in your
project right now (often assumption/wrt to main objective/H)

( ) | not today! ]

Veloc:|t¥ rapid reduction of risk in the chosen dimension
(you want to learn ASAP — you don't want to “build your life
on a lie”! e.g., prototype it vs build expensive infra) TToday! ]




What Is Velocity?



Problematic point of view

"Research is so much q
slower than industry.”

| feel like we're just not

getting anywhere.” q

“| missed another q
submission deadline.”

We're not making
enough progress/suck.




What research is not

1. Figure out what to do.
2. Do it.
3. Publish.

What research is

Research is an iterative process of
exploration, not a linear path from
idea to result [Gowers 2000]
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What research is

Research is an iterative process of exploration, not a linear path
from idea to result [Gowers 2000]

Can be demotivated because it is not linear
Used to classes, put X energy & you get X points back

Need a Mindset shift:

failure = opportunity to learn & improve/grow

uncertainty = opportunity to learn & be curious & investigate
stuck = opportunity to be creative

Did you deliver what you committed, regardless of result?




almost every project has a swamp.

The Swamp: challenges that get the
project stuck for an extended length
of time

E.g.;

Model not performing well

Design not having intended effect

Engineering challenges keep
cropping up
& etc




Swamps make progress a poor measure

Swamps can make a project appear to have no or little progress for an
extended period of time.

Swamps make progress a bad measure/metric because you might be
completing your deliverables (e.g., experiment plots) and learning a lot,
even if things are failing!

Progress := "it's working”, but you can’t control if experiments will work

Learning = $$ Gold = Failures

However, swamps are when you need to be at your most creative. You
need to try many different ideas, and rapidly, to orienteer your way out of
a swamp.

The difference between an amazing and a merely good researcher: how
effectively and rapidly you explore ways to escape the swamp.
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Swamps make progress a poor measure

Recovering quickly & learning better measure/metric!

Yoann Bourgeois


http://www.youtube.com/watch?v=x_DA3dgRSrw

Enter velocity

Drawn from theory and practice of rapid prototyping
Buxton, Sketching User Experiences
Schon, The Reflective Practitioner

Houde and Hill, What Do Prototypes Prototype?

“Enlightened trial and error succeeds over the planning of
the lone genius.” - Tom Kelley




Velocity vs. progress

Progress is an absolute delta of your position from the last
time we met. How far have you gotten?

Velocity is a measure of the how much you've learned in
that time.

If you tried a ton of creative different ideas and they all

failed...
that's low progress GREAT JOB!II

but high velocity




Why is velocity a better measure?

Because we are in a high uncertainty landscape, so all you can
guarantee is to learn quickly, to learn what is the “correct” thing to be
doing & save effort/time

Because failures often mean learning.

Because we likely needed to experience those failures to eventually get
to a success: you're learning the landscape.

Because the worst outcome is not failure, but tunneling unproductively -
in the “wrong” direction

That's low progress this is disappointing
and low velocity




How do | achieve
high velocity?



Restating our goal, precisely

Each week’s effort — a draft paper introduction, a user interface, an
engineered feature, an evaluation design — is on the path toward
understanding the research guestion.

We have a gquestion to answer this week: Will our hunch work in a
simple case? Is assumption X valid? Will this revised model
overcome the problematic issue? Can we write a proof for the
simple case? We've chosen this week’s question that we're trying to

answer carefully. <

Velocity is the process of answering | Choosing this question is the
that question as rapidly as possible. | Process of vectoring.




Vectoring vs Velocity

Separation of concerns

Vectoring: what is the most risky uncertain idea that can make the
project fail?

e.g. Is assumption X valid?
Usually a more abstract idea

Velocity: what exactly should we prototype concretely to |learn & derisk
quickly

e.g., Build a mock video game in with pen and paper, train small model

Usually concrete, targets the core directly and prototypes periphery =



Approach: core vs. periphery

Achieving high velocity means sprinting to answer this
week's question, while minimizing all other desiderata for
now.

This means being clear with yourself on what you can
Ignore:

Core: the goal that needs to be achieved in order to answer the
question

Periphery: the goals that can be faked, prototyped or assumed, or
subsetted, or mocked in, so we can focus on the core guestion.
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Core-periphery mindset
The week’s goal is not a demo.
Though this is what is tempting: think, select, and then create.

But this means working on everything both in the core and in the periphery.

The week’s goal is instead an answer to a question - learn.

To answer a question, you don't need to address all the issues in the
periphery. Just focus on what's in the core.

Make strong assumptions about everything that's in the periphery: use an
easy or smaller subset of the data, make simplifying assumptions while
working on your proof, ignore other nagging questions for the moment

Be creative & “ruthless” about quickly derisking! 2




Core-periphery mindset

I'm dedicating a second slide to this concept because it's the
key.

Your approach should be, necessarily, incomplete. Do not create
a mockup or a scale model. Perfection is your enemy!

Instead, derive everything from your current question:

Will this approach retain all users?
Will this measure correlate with my gut observations?
Will this engineering approach be satisfactory?

Be rapid. Be ruthless. Strip out or fake everything not required to
answer the guestion. "




Core-periphery mindset

Seriously: I'm dedicating a third slide to this.

Answer guestions, don't engineer. This tends to rankle
essentially every facet of your undergraduate training/classes.

Very dangerous to feel you achieved something because you finished
coding.

You achieved something if you answered a question, e.g., produced an
experiment plot, i.e.: $$ Gold = experiments to learn from

Too often, people pursue perfection in the first pass: perfect drafts,
perfectly engineered software, perfect interaction design.

Remember: the goal is to answer the question, not to build that part of
your system permanently (yet). 2“



Prototypes of
the

original
Microsoft
mouse.

Each one
implicitly
answering a
question.



o NosAm ov/osns %50

"'S! f‘w«

}1 What question
were they asking?

What did they
trade off?



All together now

Each week, we engage in vectoring to identify the biggest
unanswered question. This should be the focus of your velocity
sprint for the week.

To hit high velocity, be strategic about stripping out all other
dependencies, faking what you need to, etc., in order to
answer the question.

Be prepared to iterate multiple times within the week!
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Let’s Try It



Let'’s try it out...

Get in groups of 3-4, you'll have two minutes to discuss
each question.
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Are Emergent Abilities of Large
Language Models a Mirage?

Emergence in LLMs?
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Computer Science
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Brando Miranda
Computer Science
Stanford University

Sanmi Koyejo
Computer Science
Stanford University

umption: Everyone thinks emergent

rschaef@cs.stanford.edu brando9Qcs.stanford.edu sanmiQcs.stanford.edu

capabilities (sharp unpredictable jumps
in performance) of LLMs is a
fundamental property of scaling Al

Recent work claims that large language models display emergent abilities: abilities
not present in smaller-scale models that are present in larger-scale models. What
makes emergent abilities intriguing is two-fold: their sharpness, transitioning
seemingly instantaneously from not present to present, and their unpredictability,
appearing at seemingly unforeseeable model scales. Here, we present an

for a particular task and model family, when ana-
lyzing fixed model outputs, emergent abilities appear due to the

Specifically,
nonlinear or discontinuous metrics produce seemingly emergent abilities, whereas
linear or continuous metrics produce smooth, continuous, predictable changes in
model performance. We present our alternative explanation in a simple mathemati-
cal model, then test it in three complementary ways: we (1) make, test and confirm
three predictions on the effect of metric choice using the InstructGPT/GPT-3 family
on tasks with claimed emergent abilities; (2) make, test and confirm two predictions
about metric choices in a meta-analysis of emergent abilities on the Beyond the
Imitation Game Benchmark (BIG-Bench); and (3) show how to choose metrics to
. - produce bef ing] abilities in multiple vision tasks
éuB) I (,:’:) Werd B (R EesER Qs across diverse deep network architectures. Via all three analyses, we provide
evidence that emergent abilities disappear with different metrics or with better
statistics, and
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Abstract

Recent work claims that large language models display emergent abiliti
not present in smaller-scale models that are present in larger-scale models.
makes emergent abilities intriguing is two-fold: their sharpness, transitioning
seemingly instantaneously from not present to present, and their unpredictability,
appearing at seemingly unforeseeable model scales. Here, we present an
for a particular task and model family, when ana-
lyzing fixed model outputs, emergent abilities appear due to the
Specifically,
nonlinear or discontinuous metrics produce seemingly emergent abilities, whereas
o o o o linear or continuous metrics produce smooth, continuous, predictable changes in
. model performance. We present our alternative explanation in a simple mathemati-
e C O r I g e S I re C I O n O r I S o cal model, then test it in three complementary ways: we (1) make, test and confirm
three predictions on the effect of metric choice using the InstructGPT/GPT-3 family
on tasks with claimed emergent abilities; (2) make, test and confirm two predictions
about metric choices in a meta-analysis of emergent abilities on the Beyond the
Imitation Game Benchmark (BIG-Bench); and (3) show how to choose metrics to
o @ O produce never-before-seen seemingly emergent abilities in multiple vision tasks
| S I t u e t O m O e S C O r I n q m e t r I C across diverse deep network architectures. Via all three analyses, we provide
. evidence that emergent abilities disappear with different metrics or with better
-
‘may not be a fundamental property of scaling Al models.
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O W O W e t e St I t a S q u I C y a S p O S S I e not present in smaller-scale models that are present in larger-scale models.
. < oA -

Rylan Schaeffer Brando Miranda Sanmi Koyejo
Computer Science Computer Science Computer Science

makes emergent abilities intriguing is two-fold: their sharpness, transitioning
seemingly instantaneously from not present to present, and their unpredictability,
appearing at seemingly unforeseeable model scales. Here, we present an

for a particular task and model family, when ana-
lyzing fixed model outputs, emergent abilities appear due to the

One change; the scoring function A )

linear or continuous metrics produce smooth, continuous, predictable changes in
model performance. We present our alternative explanation in a simple mathemati-
cal model, then test it in three complementary ways: we (1) make, test and confirm
three predictions on the effect of metric choice using the InstructGPT/GPT-3 family
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Abstract

Recent work claims that large language models display emergent abilities: abilities
not present in smaller-scale models that are present in larger-scale models. What
makes emergent abilities intriguing is two-fold: their sharpness, transitioning
seemingly instantaneously from not present to present, and their unpredictability,
appearing at seemingly unforeseeable model scales. Here, we present an

for a particular task and model family, when ana-
lyzing fixed model outputs, emergent abilities appear due to the

Specifically,
nonlinear or discontinuous metrics produce seemingly emergent abilities, whereas
linear or continuous metrics produce smooth, continuous, predictable changes in
model performance. We present our alternative explanation in a simple mathemati-
cal model, then test it in three complementary ways: we (1) make, test and confirm
three predictions on the effect of metric choice using the InstructGPT/GPT-3 family
on tasks with claimed emergent abilities; (2) make, test and confirm two predictions
about metric choices in a meta-analysis of emergent abilities on the Beyond the
Imitation Game Benchmark (BIG Bench); and (3) show how to choose metrics to
produce befi abilities in multiple vision tasks
across diverse deep network architectures. Via all three analyses, we provide
evidence that emergent abilities disappear with different metrics or with better
statistics, and
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Figure 1: Emergent abilities of large language models. Model families display sharp and unpre-
dictable increases in performance at specific tasks as scale increases. Source: Fig. 2 from [38].
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Abstract

* b * Recent work claims that large language models display emergent abilities: abilities
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makes emergent abilities intriguing is two-fold: their sharpness, transitioning
seemingly instantaneously from not present to present, and their unpredictability,
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Specifically,
nonlinear or discontinuous metrics produce seemingly emergent abilities, whereas
Z e ro linear or continuous metrics produce smooth, continuous, predictable changes in
model performance. We present our alternative explanation in a simple mathemati-
cal model, then test it in three complementary ways: we (1) make, test and confirm
three predictions on the effect of metric choice using the InstructGPT/GPT-3 family
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Abstract

Recent work claims that large language models display emergent abilities: abilities
not present in smaller-scale models that are present in larger-scale models. What

Increase test set for modular arithmetic (we have s e e
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for a particular task and model family, when ana-
lyzing fixed model outputs, emergent abilities appear due to the

Specifically,

nonlinear or discontinuous metrics produce seemingly emergent abilities, whereas

linear or continuous metrics produce smooth, continuous, predictable changes in

model performance. We present our alternative explanation in a simple mathemati-
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Social debugging: tlash

organizations

They had a problem of online workers not
being as good as their Upwork profile
suggested. They wanted workers who
were experts at Angular, Django, Ul, UX,
marketing, etc, but often in practice they
were not as good as they advertised.

Had a hunch that giving workers ~Thr
starter tasks would allow us to vet them.

How do you test this hunch?

Flash Organizations: Crowdsourcing Complex Work
By Structuring Crowds As Organizations

Melissa A. Valentine, Danicla Retelny,

Negar Rahmai

Isee Doshi, Michacl S. Bernstein

Stanford Universi
Nashorgs@cs stanford,edu

ABSTRACT

"This paper introdeces flash organizations: crowds structared
like organizations 10 achieve complex and open-ended goals
Microtask workflows. the dominast crowdionrcing structures
today, only enable goals that are so sinsple and modular that
their path can be cemirely pre-efined. We presees a sysiem that
organizes crowd workers into computationally-represented
structures inspired by those wsed in organizations ~— roles,
tesens, and hicrarchies — which support emergent and adap-
tive coondination toward open-ended goals. Our sysiem intro-
duces two techaical costributions; 1) cncoding the crowd's
division of labor into de-Individealized roles, much as movie

crews o disaster fespomse 1S USe FOles 10 SUPPOTE C00r-

dination between oa-demand workers wha have not worked
together before: and 2) reconfiguring these structures through
2 model inspired by version contral, enabling continuous adap-
tation of the work and the division of labor. We report a
deplayment in which lash organizations scoessfully carricd
out open-emded ad complen goals previoasly out of reach

crowdsourcing, incleding product design, sofiware devel-
opment, and game productic. This research demonstrates
digitally networked organizations that flexibly assemble and
reassemble themselves from a globally distributed oaline work-
force to accomplish complex work

ACM Classitication Keywords
H.S5.3. Information Interfaces and Presentation (e.g. HCI):
Growp and Organization lsserfaces
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Crowdsourcing: expert crowd woek: flash oeganizatioos

INTRODUCTION

ourcing mobilizes a massive caline workforce into
collectives of unprecedented scale. The donsinast approach
for crowdsourcing is the microtask wokflow, which enables
contribeions at scake by modularizing and pee-specifying all
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actions 7, S51. By drawing together cxpens (71] of ama-
teuns (6], microtask workflaws have peoduced remarkable
Socoess in robotic comtred (48], data clusering [12), galaxy la-
beling [$4]. and other goals that can be similarly pee.specificd.
However, goals that are open-caded and complex. for cxample
invention, production. and enginecring [42), remain Largely
out of reach, Open-ended and complex goals are st cas-
ily adapted to macrotask workflows because it is diflicult to
articulate, modularize, and pre-specify all possible actions
meeded to achieve them (72, 81). If crowdsomrcing remains
coafined 10 oaly the goals so peedictable that they can be en-
tirely pre-defined using workflows, crowdsosrcings long-term
applicability. scope and valoe will be severely limited.

In this paper. we explore an allemative crowdsourcing ap-
proach that can achicve far moee open-coded and complex
wrpanizations. We take inspi-
ration from modemn organizations because they regularty or
chestrato large groups in pursuit of complex and opo-ended
paals, whether short-term ke disaster respos:
Tike spaceflight [8, 9. 6], Organizations achicve this
plexity throwgh a set of formal strucsares — roles, seams. and
Bicrarchics — that encode respamsibilitics, intendependncics
and Information Now witheus necessarily pre-specifying all
actions [15, 8$4).




Social debugging

organizations

They picked a small number of domains and
manually generated quick test tasks for them. We
posted these as jobs, giving a time limit. We
manually evaluated the results.

They didn’t care about generalizability or
software integration.

Later, they asked: could this scale to hundreds of
people and tens of domains?

flash
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organizes crowd workers into computationally-represented
structures inspired by those wsed in organizations ~— roles,
tesens, and hicrarchies — which support emergent and adap-
tive coondination toward open-ended goals. Our sysiem intro-
duces two techascal costnbutions: 1) encoding the crowd's
division of Labor into de-individealized rodes, much as movie
crews o disaster fespomse 1S USe FOles 10 SUPPOTE C00r-
dination between oa-demand workers wha have not worked
together before: and 2) reconfiguring these structures through
2 model inspired by version contral, enabling continuous adap-
talioa of the work and the division of | We repoet a
deplayment in which lash organizations scoessfully carricd
out open-emded ad complen goals previoasly out of reach

crowdsourcing, incleding product design, sofiware devel-
opment, and game productic. This research demonstrates
digitally networked organizations that flexibly assemble and
reassemble themselves from a globally distributed oaline work-
foree to accomplish complex work

ACM Classitication Keywords
H.S5.3. Information Interfaces and Presentation (e.g. HCI):
Growp and Organization lsserfaces
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Crowdsourcing: expert crowd woek: flash oeganizatioos

INTRODUCTION

ourcing mobilizes a massive caline workforce into
collectives of unprecedented scale. The donsinast approach
for crowdsourcing is the microtask wokflow, which enables
contribeions at scake by modularizing and pee-specifying all
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actions 7, S51. By drawing together cxpens (71] of ama-
teuns (6], microtask workflaws have peoduced remarkable
Socoess in robotic comtred (48], data clusering [12), galaxy la-
beling [$4]. and other goals that can be similarly pee.specificd.
However, goals that are open-caded and complex. for cxample
invention, production. and enginecring [42), remain Largely
out of reach, Open-ended and complex goals are st cas-
ily adapted to macrotask workflows because it is diflicult to
articulate, modularize, and pre-specify all possible actions
meeded to achieve them (72, 81). If crowdsomrcing remains
coafined 10 oaly the goals so peedictable that they can be en-
tirely pre-defined using workflows, crowdsosrcings long-term
applicability. scope and valoe will be severely limited.

In this paper. we explore an allemative crowdsourcing ap-
proach that can achicve far moee open-coded and complex
wrpanizations. We take inspi-
ration from modemn organizations because they regularty or
chestrato large groups in pursuit of complex and opo-ended
paals, whether short-term ke disaster respos:
Tike spaceflight [8, 9. 6], Organizations achicve this
plexity throwgh a set of formal strucsares — roles, seams. and
Bicrarchics — that encode respamsibilitics, intendependncics
and Information Now witheus necessarily pre-specifying all
actions [15, 8$4).
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Children use the mutual exclusivity (ME) bias
to help disambiguate how words map to

Strong inductive biases allow children to learn in fast and adaptable ways. Children

use the mutual exclusivity (ME) bias to help disambiguate how words map to

o o o referents, assuming that if an object has one label then it does not need another. In

r r n m I n I n n this paper, we investigate whether or not vanilla neural architectures have an ME
I bias, demonstrating that they lack this learning assumption. Moreover, we show

that their inductive biases are poorly matched to lifelong learning formulations

of classification and translation. We demonstrate that there is a compelling case

for designing task-general neural networks that learn through mutual exclusivity,

label then it does not need another.

1 Introduction

Children are remarkable learners, and thus their inductive biases should interest machine learning

I researchers. To help learn the meaning of new words efficiently, children use the “mutual exclusivity™

e a a u n C t a t n e u r a n e tW O r S V.Y, O n t (ME) bias  the assumption that once an object has one name, it does not need another [1] (Figure 1).
In this paper, we examine whether or not vanilla neural networks demonstrate the mutual exclusivity

bias, either as a built-in assumption or as a bias that develops through training. Moreover, we examine

common benchmarks in machine translation and object recognition to determine whether or not a
maximally efficient learner should use mutual exclusivity.

. .
S O W t I S I a S . ‘When children endeavour to learn a new word, they rely on inductive biases

to narrow the space of possible meanings. Children learn an average of Show me the “dax”
about 10 new words per day from the age of one until the end of high school
[2], a feat that requires managing a tractable set of candidate meanings. A /
typical word leaming scenario has many sources of ambiguity and uncer-
o o tainty, including ambiguity in the mapping between words and referents. J
’? Children hear multiple words and see multiple objects within a single scene,
H O W d O O u u I C k | t e St t h I S often without clear supervisory signals to indicate which word goes with
. which object [3].
The mutual exclusivity assumption helps to resolve ambiguity in how words Sctey 131 critanms ot
map to their referents. Markman and Watchel [1] examined scenarios like o gsociate the novel
Figure 1 that required children to determine the referent of a novel word. word (“dax”) with the
For instance, children who know the meaning of “cup” are presented with  novel object (right).
two objects, one which is familiar (a cup) and another which is novel (an
unusual object). Given these two objects, children are asked to “Show me a
dax,” where “dax” is a novel nonsense word. Markman and Wachtel found that children tend to pick
the novel object rather than the familiar one. Although it is possible that the word “dax” could be

another word for referring to cups, children predict that the novel word refers to the novel object —
demonstrating a “mutual exclusivity” bias that familiar objects do not need another name. This is only

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.




Mutual Exclusivity

We used a rough simulation!

Map a one-hot to vector to another
one-hot vector.

Train a small neural network, ~5 minutes
locally.

Next Step: Does this work with more
realistic data? Can small variations in
training change this?

Mutual exclusivity as a challenge for deep neural
networks

Kanishk Gandhi Brenden Lake
New York University New York University
kanishk.gandhiCnyu.edu Facebook Al Research
brendennyu. edu

Abstract

Strong inductive biases allow children to learn in fast and adaptable ways. Children
use the mutual exclusivity (ME) bias to help disambiguate how words map to
referents, assuming that if an object has one label then it does not need another. In
this paper, we investigate whether or not vanilla neural architectures have an ME
bias, demonstrating that they lack this learning assumption. Moreover, we show
that their inductive biases are poorly matched to lifelong learning formulations
of classification and translation. We demonstrate that there is a compelling case
for designing task-general neural networks that learn through mutual exclusivity,
which remains an open challenge.

1 Introduction

Children are remarkable learners, and thus their inductive biases should interest machine learning
researchers. To help learn the meaning of new words efficiently, children use the “mutual exclusivity™
(ME) bias — the assumption that once an object has one name, it does not need another [1] (Figure 1).
In this paper, we examine whether or not vanilla neural networks demonstrate the mutual exclusivity
bias, either as a built-in assumption or as a bias that develops through training. Moreover, we examine
common benchmarks in machine translation and object recognition to determine whether or not a
maximally efficient learner should use mutual exclusivity.

‘When children endeavour to learn a new word, they rely on inductive biases

to narrow the space of possible meanings. Children learn an average of Show me the “dax”
about 10 new words per day from the age of one until the end of high school

[2], a feat that requires managing a tractable set of candidate meanings. A

typical word leaming scenario has many sources of ambiguity and uncer-

tainty, including ambiguity in the mapping between words and referents.

Children hear multiple words and see multiple objects within a single scene,

often without clear supervisory signals to indicate which word goes with

which object [3].

e & g g i I -
The mutual exclusivity assumption helps to resolve ambiguity in how words :‘:f:;;‘{ff‘g;ﬁ;‘:’:;;

map to their referents. Markman and Watchel [1] examined scenarios like (; ags0ciate the novel
Figure 1 that required children to determine the referent of a novel word. word (“dax”) with the
For instance, children who know the meaning of “cup” are presented with  novel object (right).

two objects, one which is familiar (a cup) and another which is novel (an

unusual object). Given these two objects, children are asked to “Show me a

dax,” where “dax” is a novel nonsense word. Markman and Wachtel found that children tend to pick
the novel object rather than the familiar one. Although it is possible that the word “dax” could be
another word for referring to cups, children predict that the novel word refers to the novel object —
demonstrating a “mutual exclusivity” bias that familiar objects do not need another name. This is only

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.




Engineering: Dream Team

This project used multi-armed bandits to
identify over several rounds of interaction

whether teams should be flat or hierarchical,

supportive or critical, etc. But we didn't
know: could these multi-armed bandits
actually converge fast enough to be useful?

We had a rough implementation of the
multi-armed bandits, but it wasn’t

production ready for interacting with teams.

In Search of the Dream Team:
Temporally Constrained Multi-Armed Bandits for
Identifying Effective Team Structures

Sharon Zhou, Melis

Valentine, Michael S. Bernstein

Stanford University
sharonz@cs stanford.edu, mav @ stanford edu, msh@cs stanford cdu

TEAM STRUCTURES TEAM A

TEAM B TEAM C
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ABSTRACT
Team structures—roles, nomms, and inseraction patierns
define how teams work. HCI researchers have thearired ideal
team stroxturcs and buibt systems pudging tcams towards them,
such as thase increasing bam-taking, deliberation. and knowd-
edge dissribtion. However, orgasizational behavior rescarch
argues. agaknst the existence of universally ideal structures.
Teams are diverse and excel under different structures: whike
one team might flourish under hicrarchical leadership and a
critical cultwee, another will fioender. In this paper. we peesent
DreanTean: a system that explores a large space of possible
team structures o identify effective structures foe each team
hased 00 observable foedback. To avoid everahelmisg seams
with 100 muany chaages, DrcamTean istroduces multi-armed
Dandirs wirh femporal constraiuty; 3 algorithns that panages
the timing of exploratica-exploitation trade-offs acrass multi-
ple handits simultancously. A field experiment demonstrated
that DreamTean teams outperformed self-managing teams
by 38%, manager-led teams by 6%, and tcams with uncon-
strainod bibits by 41%. This rescarch advances computation
a5 3 powerful partacr in cstablishieg effective teamwork

crmbelmsing Learon i 8 debage of simaltancon

ACM Classification Keywords
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INTRODUCTION
Human-computer ineraction research has featured a long lise
of sysiems that influcnce 7z

e
collectively s feam structures—define bow 3 team works 1o

32). For many years, HOI researchers bave theorized
ideal team structures {1, 45) and beilt systems that nudge
tcans towand those structures. such as by increasing shared
awarcncss {15, 20). adding channels of communication |65,

64,70], and convenimg effective collaborators [38, S0, The
sesult s 3 Bierature that empowers sdkal lem strucberes,

Homever, organizational behavioe rescarch demies the exis-

sence of universally idesl team struceares (83, 3, 4, 26]. Struc.

tural contingency theory {17] has demoastrated that the best

seam structures depend on the task, the members, and other
actors. This begs the question: when should a tcam favor

team Structure over another? Shoukd the team have cen-

wralized o decemralized b Should i enfarce equal

panticipation from esch member? Should members offer cach

other more encouraging or critical feedback? The wivag de-

cisions can doom a team 0 dysfus

highly-paid experts—managers- to

tcam stractares [15). They arc h.udl\ 1 blanie,

of pessibilities is vast [29), with lengthy volumses, ded




Engineering: Dream Team

We used a rough simulation! Assuming
some roughly accurate numbers in how
much each team benefited from each

Sharon Zhou, Melis
sharonz@cs stanford.edu,

TEAM STRUCTURES TEAM A

TEAM B

In Search of the Dream Team:
Temporally Constrained Multi-Armed Bandits for
Identifying Effective Team Structures
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TEAM C

bandit setting, we generated teams and

Figure 1. Kach team vaccnds wnder differrad reles, morms, and latraction

there are 5o wslversally dead team strusturys. The Drvam Team

elasing learen i & debage

simulated the bandits over a few rounds. R S R R e

ABSTRACT
Team structures—roles, nomms, and inseraction patierns
define how teams work. HCI researchers have thearired ideal
team stroxturcs and buibt systems pudging tcams towards them,
such as thase increasing bam-taking, deliberation. and knowd-
edge dissribtion. However, orgasizational behavior rescarch
argues. agaknst the existence of universally ideal structures.
Teams are diverse and excel under different structures: whike
one team might flourish under hicrarchical leadership and a
critical cultwee, another will fioender. In this paper. we peesent
DreanTean: a system that explores a large space of possible
team structures o identify effective structures foe each team
hased 00 observable foedback. To avoid everahelmisg seams
with 100 muany chaages, DrcamTean istroduces multi-armed
Dandirs wirh femporal constraiuty; 3 algorithns that panages
the timing of exploratica-exploitation trade-offs acrass multi-
ple handits simultancously. A field experiment demonstrated
that DreamTean teams outperformed self-managing teams
by 38%, manager-led teams by 6%, and tcams with uncon-
strainod bibits by 41%. This rescarch advances computation
a5 3 powerful partacr in cstablishieg effective teamwork

The answer: they converged quickly
enough that this might work!

The next step: wizard of oz the interface,
so we could test it “for real” without
building integrating software.
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INTRODUCTION
Human-computer ineraction research has featured a long lise
of sysiems that influcnce 7z

e
collectively s feam structures—define bow 3 team works 1o

32). For many years, HOI researchers bave theorized
ideal team structures {1, 45] and beilt systems that nudge

tcams toward those structares. such as by increaving shared
awareness [ 18, 20). adding channels of communi on |65,
64, 70], and convening effective collaborators [38, 50). The
result is 3 Micrature that empowers ideal lcam SUWRSTCS,

Homever, organizational behavioe rescarch demies the exis-

sence of universally idesl team struceares (83, 3, 4, 26]. Struc.

tural contingency theory {17] has demoastrated that the best

seam structures depend on the task, the members, and other
actors. This begs the question: when should a tcam favor

team Structure over another? Shoukd the team have cen-

wralized o decemralized b Should i enfarce equal

panticipation from esch member? Should members offer cach
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Not all data is gooa

We found that when multiple
people try to teach a robot how to
do the same task, the robot tends to
be worse at learning the task.

We had a hunch that inconsistent
actions in similar situations were the
cause of this.

What is the quickest way to test
this?

Eliciting Compatible Demonstrations for
Multi-Human Imitation Learning

Kanishk Gandhi, Siddharth Karamcheti, Madeline Liao, Dorsa Sadigh
Department of Computer Science, Stanford University
{kanishk.gandhi, skaramcheti, madelineliao, dorsa}@stanford.edu

Abstract: Imitation learning from human-provided demonstrations is a strong
approach for learning policies for robot manipulation. While the ideal dataset for
imitation learning is homogenous and low-variance — reflecting a single, optimal
method for performing a task — natural human behavior has a great deal of het-
erogeneity, with several optimal ways to demonstrate a task. This multimodality
is inconsequential to human users, with task variations manifesting as subcon-
scious choices; for example, reaching down, then across to grasp an object, versus
reaching across, then down. Yet, this mismatch presents a problem for interactive
imitation learning, where sequences of users improve on a policy by iteratively
collecting new, possibly conflicting demonstrations. To combat this problem of
demonstrator incompatibility, this work designs an approach for 1) measuri)
compatibility of a new demonstration given a base policy, and 2) actively eliciting
more compatible demonstrations from new users. Across two simulation tasks
requiring long-horizon, dexterous manipulation and a real-world “food plating”
task with a Franka Emika Panda arm, we show that we can both identify incompat-
ible demonstrations via post-hoc filtering, and apply our compatibility measure to
actively elicit compatible demonstrations from new users, leading to improved task
success rates across simulated and real environments.

Keywords: Interactive Imitation Learning, Active Demonstration Elicitation,
Human-Robot Interaction

1 Introduction

Interactive imitation learning [1, 2, 3] from a pool of human demonstrators is a scalable approach for
learning multi-task policies for robotic manipulation [4, 5, 6]. Yet, such approaches have a critical
problem, especially in the low-to-moderate data regime: data from multiple human demonstrators
often have conflicting modes, where two users provide opposing behaviors for a single task — behaviors
that manifest as subconscious, random choices. For example, consider the nut-on-peg task in Fig. 1:
one user (in orange) approaches the nut by moving across the table, then down, while the other user
(blue) reaches down, then across.

Training on aggregated batches of data in series — starting with a base policy, adding small amounts
of data from new users, and retraining the policy after each batch — is common in interactive imitation
formulations [2, 3]; unfortunately, when we add a small number of conflicting demonstrations during
the interaction phase, the retrained policy attempts to cover both the base demonstrations and the new
set. This leads to incongruent overfitting, where a policy — even one equipped to learn multimodal
behaviors [7, 8, 9] — tries to fit the base set for most of a trajectory, but overfits to the new set for a
small subset of the state space, often with catastrophic failure modes.

To mitigate this problem, this work tackles two questions: 1) how can we measure the compatibility
between a new demonstrator and an existing policy, and 2) how can we use this measure to actively
elicit better demonstrations from a new user?

While our approach for measuring and eliciting compatible demonstrations during online collection
is novel, prior work has studied the impact of suboptimal demonstrations on learning. Most relevant,
Mandlekar et al. [10] introduce RoboMimic, a suite of simulated manipulation tasks that consist

! Additional videos & resul

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.




Teaching users to be better teachers

In a 2d maze, the demonstration
either went right and then up (RU)
or up and then right (UR).

Then | either used all the data, or
just one ‘style’ of data.

Next: How do we identity
'‘bad’ data?

61 Rejected : 128 Rejected

LIKELIHOOD Low
(b) Incompatible Operator




We sketched out a few ideas and then hired Upwork
designers to create some mocks of what they might
look like. (We decided it wasn’t cool enough and
dropped the project for the time being.)
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theory — piecework

We wanted to understand how the history of
explain unanswered questions in crowd work:

- Complexity Limits of On—Demand Work

- Decomposing Work

- Workers’ Relationships to their Work

And maybe there might be others, we thought?

Does the piecework history help us explain th

Examining Crowd Work and Gig Work Thro
Historical Lens of Piecework

Ali Alkhatib, Michael
Computer S

Bernstein, Margaret Levi
ce Department and CASBS

Stanford University
[ali.alkhatib, msb) @cs.stanford.cdu, mhevi@stanford, edu

ABSTRACT
The incernet is cmpowering the rise of crowd work. gig work,
and other forms of on-demand kabor. A Large and grow-
ing body of scholarship has aticmpted to peedict the socio-
techmical outcormes of this shift, especially addeessing three
questions: 1) What arc the complexity limits of on-demand
work?, 2) How far can work be decompased into smaller .
crotasks?, and 3) What will work and the place of work look
like for workers? In this paper, we Jook 10 the historical schal:
asship on piecework — a similar trced of woek decompasition.
distribution, and paymest thal was popular  the tuem of the
20xh century — 10 understand bow these questions might play
out with modem oa-demand work, We identify the mech-
anisnus that enabled and limited piecewoek histoeically, and
identify whether on-demand work faces the same pitfalls or
might diffcrentiate itself. This approach introdoces theoectical
grounding thal cam belp addeess some of the most persistent
questions i crowd work. and suggests design interventions
that leen from history rather than fepeat i

ACM Classification Keywords
H.S.3. Information Tnterfaces and Prescatation (c.g. HCT)
Groep and Organization laserfaces

Author Keywords
Crowd woek: gig work: on-demand work; picoowork

INTRODUCTION

The past decade has seen a flourishing of computationally-
medisted Labor. A framang of work into modular, pre-defimed
components enables computational hisiarg and management
of workers 3¢ scale (68, 17, 83). In this regime, distributed
workers engage in work whenever their schedules allow, often
with lithe t0 no awareness of the broader coatext of the work,
and often with fecting identities and associations | 104, 4],

For years, soch labor wars limited o information woek such as
dses anmoeaton and surveys (82, 161, 166, 31, 119, However,

physically embodicd work such s driving and cloaning have
o spawned multiple caline labor markets as well (93,3, 1,
2). In this puper we will use the term on-demand fabor, to
capeure this pair of related phenomens: fiest, cromd work (83,
on platforms such as Amazoa Mechanical Turk (AMT) and
ather siées of (predosninaealy) information work: and seccnd,
i work (48, 118). often as platforms for ane-off jobs, like
driving. couricr services. and administrative support.

The realization that complex goals can be accomplished by
directing crowds of workers has sperred firms to explore sites
of labor such as AMT 10 find the limiss of this distributed,
on-demand woekforce. Rescarchers have also taken 10 the
space in camest, developing systems that cnable new foer
production (e.5. [14, 18, 117]) 3ad porsuing secial

inquiry ko the workers oa these platfoems {128,

rescarch has sdentified the sociality of gig work [54), as well
as the frustration and disenfranchisement that these systems
effect [72, 104,

10 this frastration. r on the resistance that workers
expeess against digitally-nsediated labor markets (4, 133

This body of research has broadly worked towand the answer 30
oec ceneral uestion: What does the futine bold for on-demand

ork and those who do ir? Researchers have offered insights
o this question along three major threads: First, what are the
complexity limits of on-demand woek — specifically. how
comples ae the goals that crowd work can accomplish, and
what Kinds of indastries may oventually utilize it [142,79, 168,
164, 110, $9]7 Second, how far can work be decompased b0
smaller nsicrotasks (27, 100, 92 29, 111}7 Asd thind, what
will woek and the place of work look like for woekers [72, 73,
S4, 106]2

This rescarch bas Langely sought to answer these questions by
examining evtast on-demand work phenomens. So far, it has
met offered an antology 10 deseribe of understand the develop-
ments in worker processes that researchers have developed. o¢
the emergent phenomens ia social enviromments; nor has any
rescarch goa 30 far x to anticipate future developments.

les 10 understand on-demand work
In this paper, we offer a framing for on-demand woek a5 3
contemporary instantiatica of piecewark. 3 work and paymest
stroctuee which breaks tasks down into discrete jobs, whercin
payrent is mrade for owipur, cather thas foe fime. We are ot
the finst 1o relate on-demand work 1o piccework: i 2013, for




theory — piecework

Do a quick exploration of each question. Try writing a short white
paper for it — less than a page.Aim to write three or more.

Don’t worry about final quality. Our goal is to mainly see if “there’s a
there there”: if it’s interesting enough to go deeper.




Main Take away

Once a direction of highest risk is chosen (Vector)
What is the quickest way to learn about the idea?
Prototype the periphery, choose the easiest task

Focus on the core



Let’s Try It



Your turn

Pair up with someone not on your project.

5 min each person: describe your project’s current state, the

current question you're trying answer. Brainstorm together
how to increase velocity.

Afterwards, we'll share out.

49



A reminder: the algorithm

1.
2.

Articulate the question you're answering (vector).

Decide what's absolutely core to answering that
guestion.

Decide what's peripheral.

Decide the level of fidelity that is absolutely necessary.

Go — but be open to reevaluating your assumptions as
you go.

Loop with a new question.

50



Tips and tricks



“I'm being low velocity.”

Velocity = distance / time
So, it your velocity is low, you have two options:

1. Cover more distance: habits that can get you further in the

1 1

same time (e.g., "try harder”, “be a better engineer”)

You're typically already maxed out on this. l

2. Decrease the time: prototype more effectively

WIN. Prototype more narrowly, lower your
fidelity expectations (e.g., spit out any draft)

52



“I'm being low velocity.”

Velocity = distance / time, if your velocity/learning is low, you can:

1. Cover more distance: Only ~linear gains given fix time spent

2. Decrease the time: , especially early on!
‘(eventually it does plateau)
fastest is to not do [t=0] —

Plot of Velocity = ¢ where d=1

or do quickly [t<1] (steep!) . Fast gains, less

time spent e.g.,
when t=0, t<|

Extremel: you get infinite velocity, t=0
suggests don’t do periphery if you can!

Extreme?2: less time t<1 — faster




On Tiktok or Twitter or E-mail... ?

This signals a lack of focus, and is a pretty
certain predictor that you're in a swamp.

It means you're prototyping too broadly: you're unfocused!
focus your goal.

Or you're requiring too high a level of fidelity: you have
unreasonable standards! lower your expectations.

Develop an internal velocity sensor, and as soon as you
recognize this, apply one of the two rules.

Focus or lower fidelity y



Lowering standards: parallelism

Too often, we suffer from what's known in the literature as
fixation: being certain in an idea and pursuing it to the exclusion
of all else. We cannot separate ego from artifact.

Instead, to answer the question, it's often best to explore
multiple approaches in parallel.

“While the quantity group was busily churning out piles of work—and
learning from their mistakes—the quality group had sat theorizing about
perfection, and in the end had little more to show for their efforts than
grandiose theories and a pile of dead clay.”

— Bayles and Orland, 2001
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Corollary 1: pivoting

Velocity is why cutting yourself off short and pivoting to a
new project can be so dangerous in research.

Typically people pivot after a week in the swamp (the “fatal flaw

fallacy”), rather than iterating with high velocity out of the swamp.

| promise that the project you pivot to will have a swamp
too.

Learn to increase velocity and prototype your way out of
the swamp faster, instead of seeking out a swampless
project.
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Corollary 2: technical debt

Technical debt := “cost of taking too many shortcuts”
Obviously, at some point you need to make sure you're not too
deep in technical debt, design debt, or writing debt.

But luckily, most people can only run their processors hot for a few
hours a day. Everything I've described takes a lot out of you.

When you're out of creative cycles, spend time maturing other parts
of your project that are no longer open questions (help time [t]
decrease later). Or, sometimes we reach a phase where we pause
prototyping and focus on refinement and execution for a bit.

Tip: Talking to others/presenting in lab can help in creativity too!



Corollary 3: More tips

Tip: walks with no headphones

1. You can be more creative on a fast prototype (velocity)
2. You can be more creative to think of possible unknowns (vector)
3. You can even refine your attempt when you are commuting

Reflect often on what you learned and how you could have been
more aggressive to prototype

Honesty: Was that really necessary? What did | truly get from this?

Mindset: Failure is good! Because learning is good!
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Why is velocity so
important?



Great research requires
high velocity

Don't let 6-12 month paper deadlines obscure the velocity at which
research needs to move in order to succeed.

If you want to achieve a high impact idea, you need to try a lot of
approaches and refine and fail a lot. You want to do that as guickly as
possible due to uncertainty.

If you can prototype and learn and fail 5x as quickly as the next person,
you will be able to achieve far more (de) risky and impactful research.
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Takeaways, in brief



1) The swamp is real, and it
slows visible progress.



2) Velocity is a far better
measure/metric of yourself than

progress, and it's something you
actually have control over.

(you can’t control experiments
working in unknown envs)



3) Achieve high velocity by
being clear what gquestion you're
answering, and focusing
ruthlessly on the core of that
question while stripping out the
periphery.



4)
ve

f you're low velocity,
ocity = distance / time. Either

increase distance (rarely
possible) or decrease time (often
possible: you're too broad or
too perfectionist or doing too
much.




And finally...

Get into your project groups and discuss your strategy for
velocity. What's working? What can be improved?
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Velocity in Research
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